ஐ.எஸ்.எஸ்.என்: 2376-130X
Li Baoxing, and Zhu Yuhong
Combining the full-potential linear–muffin–tin–orbital molecular-dynamics (FP-LMTO-MD) and the Amsterdam Density Functional (ADF) with TZ2P basis set in conjunction with self-consistent-field (SCF), we have studied the geometric features and stabilities of the SinO (n=14-18) clusters.. The total binding energy Etot, gap of HOMO (highest-occupied molecular orbital)-LUMO (lowest-unoccupied molecular orbital) Eg, dipole moment μ and total constant volume heat capacity Cv(tot) were also calculated. The results show that the one dopant oxygen atom tends to occupy the edge or the surface position in the middle size silicon clusters (Sin, n=14-18). To further understanding the evolutionary tendency of the physical characteristics for the Si-O clusters with different composition, the Si10-mOm (m=1-8) clusters were also studied using the same methods. It was found that the structures of the Si10-mOm (m=1-8) clusters evolve from compact three dimensions to chain-like with increasing of the O proportion. The binding energy curve of Si10-mOm clusters with different m shows a dip at m=6, which suggests that an optimal proportion of O and Si atoms may exist in the Si10-mOm(m=1-8) clusters.