ஐ.எஸ்.எஸ்.என்: 2168-9776
Ademola Johnson Afe
This thesis covers the process of making Ethanol from wood biomass instead of starchy biomass. The saw dust of Gmelina (Gmelina arborea), Eku (Brachystegia euricoma) and Mahogany (Entandrophragma cylindricum) was collected in a saw mill in Ore and used to produce ethanol by hydrolysis and fermentation processes. The density of each of the wood species was thereafter determined as 570 kg/m3, 750 kg/cm3 and 600 kg/cm3 respectively. The yield of ethanol from Eku, Mahogany and Gmelina wood was determined as 50.61 g/l per 100 g of dry sawdust, 55.43 g/l per 100 g of dry sawdust and 53.01 g/l per 100 g of dry sawdust respectively. The density of the ethanol produced from the wood of Eku, Mahogany and Gmelina was 0.8033 g/cm3, 0.7088 g/cm3, and 0.8033 g/cm3 respectively. These results were subjected to Analysis of Variance (ANOVA) and compared with conventional ethanol. The ANOVA result shows no significant difference among the ethanol yield and ethanol density obtained from the three wood species and that of the conventional ethanol. The ionic constituents of the ethanol of the three wood biomass was analyzed using Furrier Transform Infrared Spectrometric Analyzer (FTIR) and Atomic Absorption Spectrometric Analyzer (AAS). The AAS result shows that the ethanol obtained from the three wood species contains transition metals like Copper (Cu), Zinc (Zn), Cadmium (Cd) and Chromium (Cr) while the FTIR results show the presence of ethanol functional groups such as OH, Carbon to carbon single bond which are normal components of ethanol in the conventional ethanol as well as in the ethanol produced from each of the three wood species.