ஐ.எஸ்.எஸ்.என்: 2155-9899
Salma Iqbal and Ashok Kumar
Objective: Contact with invading pathogens and/or tissue injury leads to the polarization of macrophages into either a M1 or a M2 state which is further divided into M2a, M2b and M2c subsets. The human macrophage subsets have been poorly characterized. The present study was undertaken to characterize macrophage polarization using a non-exhaustive panel of surface markers with respect to M1, M2a, M2b and M2c macrophages and production of pro- and anti-inflammatory cytokines in response to various toll-like receptors (TLR), ligands.
Methods: We generated various macrophage subsets by treating monocyte-derived macrophages (MDMs) with IFNγ (M1), IL-4 (M2a), LPS and IL-1β (M2b) or IL-10 (M2c) followed by stimulation with toll-like receptor (TLR)- 2, TLR-3 and TLR-4 agonists and analysis of surface marker and cytokines expression was carried out by flow cytometry and ELISA, respectively.
Results: M2a subset was characterized by CD14low, CD163low and TLR4low phenotype and produced high levels of IL-10. M2b subset was characterized by CD14high, CD80high and CD200Rlow phenotype and produced IL-6 prior to stimulation. M2c subset displayed a CD86low, CD163high phenotype and produced high levels of IL-10. M1 subset was characterized by CD80high, CD86high, CD163low and TLR4high phenotype and produced high levels of proinflammatory IFN-g, IL-12, TNFα and IL-23 following stimulation.
Conclusion: This study characterizes all four polarization states in human macrophages. Each polarization state demonstrated a unique cell surface marker profile and cytokine profile. These phenotypic markers can be used to characterize macrophage populations in tissue inflammatory disease conditions in vivo to further understand disease pathogenesis.